
Module 4

SELES – Driving Models

Scenario Scripts

Andrew Fall
Landscape Systems Ecologist

Gowlland Technologies Ltd.

April 2024

Module 4 Objectives

What you can expect to learn from this module:

• SELES

– How to open and run an existing SELES model

– How to change parameters and other inputs to an existing model

– How to control simulations

– How to modify inputs to an existing model to apply it in a different

landscape

➢ See SELES User Documentation: Part 3 - sections 1, 2 and 3

Running Existing Models
overview

➢ Running existing models and scenarios

➢ manually via the user interface (common during testing)

➢ automatically via scenario scripts (common for experiments)

➢ Managing scenario scripts (SELES scenario language)

➢ Changing parameter values, input layers, input tables, etc.

➢ Controlling output locations

➢ Designing experiments

➢ Adapting models to new study areas

Running Existing Models
basic steps

• Open existing scenario script file (.scn files) in
SELES

• IF simulation is started manually:

– scenario will

» load all necessary layers and models

» set default parameter values

» move to defined output folder

» modify display state of views

– need to run model via simulation dialog

• IF simulation is started automatically

– scenario will additionally start simulation

SELES Scenario Structure

Initial State Landscape Events

SELES

Harvesting

Succession

Fires

Output State

Running Existing Models
manual simulation control

– Set simulation duration

– Control buttons

• Simulate/Stop toggle:

– Simulate (simulation not running): start simulation

– Stop (simulation running): early termination

• Step (simulation not running or simulation paused):

– start/continue simulation and pause after Step size time units

• Pause/Continue toggle:

• Pause (simulation running):

temporarily halt simulation

• Continue (simulation paused):

continue simulation until end

Running Existing Models
manual simulation control

– Changing parameters

• select variable in list and modify value

• Press:

– Set to change current value (useful while a simulation is running)

» won’t affect initial value loaded at simulation startup

»  won’t have any effect if simulation is not running

– Set Initial state to change initial value (useful when simulation not running)

» won’t have an affect until next simulation is started

»  won’t affect a currently running simulation

– Output frequency:

– Changes refresh rate of current
view

Hands-on
loading a simple fire model

First steps

• Download and install SELES

• Download and unzip the tutorial model files

– The main model files for this module are in the “SimpleFireModel” folder

• Start SELES and open FireTopDown.scn scenario script in the

Scenarios folder

• Should look something like

this:

➢ This shows the start state (a simulation

hasn’t yet been run)

Hands-on
running a simple fire model

Open the Simulation dialog (DynamicModels menu: Simulate or the

blue down arrow on the toolbar)

• The default Simulation Length is 10 kilosteps (10,000 steps)

• The global variables list shows variables defined in the model (these may be

input parameters, tracking variables and/or outputs)

• Press Simulate to start the model running

• After some steps, should look something like this:

• Note 1: load the legend (View menu: Show Legend)

to see that black means recently burned which lightens

as cells age

• Note 2: Set “Slowdown” to 10 to slow it down a bit

Hands-on
description of the “simple top-down fire model”

The model state-space includes:

• A static StudyArea layer (to define the area of interest);

• A dynamic TimeSinceFire layer (approximately age); and

• Two global variable parameters: MeanFiresPerYear and MeanFireSize

There are two modelled processes:

(i) Aging: each step, increase each cell age by 1 (TimeSinceFire = TimeSinceFire + 1)

(ii) Fire: each step:

o Ignition: randomly select the number of fires (> 0) from an exponential distribution

(mean MeanFiresPerYear), at randomly selected locations;

o Target size: For each fire, randomly select an extent from an exponential distribution

(mean MeanFiresSize);

o Spread: iteratively spread to a random number of the 4 cardinal neighbours (but not

burnt this step) until the target size is reached

o Effect (on burning): set TimeSinceFire = 0 and ssum the area burned (AreaBurned)

Hands-on
modifying parameters

Two main parameters are: MeanFiresPerYear and MeanFireSize

• Click on one of these and change its value in the field at the top of the list

– Press Set if the simulation is running (this will change the current value

and so affect the simulation; reset to initial value when a new simulation

starts)

– Press Set Initial State if the simulation is not running (this will change the

value used to initialize the variable at simulation start up, but won’t affect

a currently running simulation)

➢ See how the TimeSinceFire layer changes with fewer/more or smaller/larger

fires. Also notice how the FireCycle variable changes.

Running Existing Models
understanding models

– How do we know what parameters a model has?

• What is a parameter?

– global variables, input files, input layers

• Documentation and user interface

– good to show what aspects developer wanted to you to see

– Without delving into scenario scripts

• models will be complete black boxes

• very limited ability to apply models or adapt to new areas

➢Understanding the scenario language is a prerequisite for a driver’s
license!

Scenario

Scripting Language

(.scn files)

SELES Scenario Structure

Scenario

Script

Load

Layers

Set up

input files

Load

model

Run

simulation

Landscape

Events

Modify

parameters

Define

State space

Typical Script Structure

• set up script variables x = 25

• load required input layers StudyArea = …

• set model dimensions Model Dimensions: StudyArea

• load model config (.sel) file Fire.sel

• modify parameter values Rotation = 100

• move to defined output folder cwd ..\output

• modify display state of views Minimize Static

• run simulation(s) SimStart 100 1

SELES Scripting Language
basics

• Procedural: step by step sequence of script commands

• Scripts are used to manage and run SELES models

➢Simple scripts may just load and run a model, but complex script

may run sequences of models or iterative experiments

• For this module: the focus is on commonly used script

command types

➢see the User Documentation Part 3 section 2 for a full list of

command types

Scenario Scripts
general

– Generally case insensitive (for keywords)

– First line must be:

 Seles Scenario

– Last line must be blank

– If a simulation is running, some commands will
block until it terminates

➢e.g. a layer used by a simulation cannot be closed
until the simulation completes

Comments

Scripts should be documented with comments

Line Comments:

 // this is a comment

Long Comments

 /* multi-line

 comment

 */

Raster Layers

• SELES currently supports GeoTIFF, GRASS,

ERDAS, ARC ASCII and (mostly) ARC binary

(.adf) formats

➢ GeoTiff is the preferred format

• A model has one resolution and extent, so all

rasters must have the same dimensions

– like a “layer cake”

– may need to align, resize and/or rescale rasters

Basic Script Commands

Loading rasters Example: Age = age_prj.tif

Saving rasters Save Age grids\a1.tif Geotiff

Closing views Close Age

Managing view displays Tile

Setting model dimensions Model Dimensions: Age

Changing working directory cwd ..\Outputs

Creating folders mkdir Outputs

➢ See User Documentation Part 3 section 2 for more syntax details

Loading Rasters

<Filename>

<Viewname> = <Filename>

Example:

DEM = gisData\grids\Elevation.tif

Note: commands in grey are not preferred or rarely used

Loading Real-value Rasters

as Fixed Precision Integer Rasters

<Filename> * #Multiplier

<Viewname> = <Filename> * #Multiplier

- multiplies cell values as they are read

➢ Rasters can also have floating point representation, but we
generally recommend avoiding that if possible (e.g. they are hard
to display)

Example:
siteIndex10 = grids\SiteIndex.tif * 10

Saving Rasters

 Save <ViewName> <FileName> <Type>

Types:

 GEOTIFF ARC ASCII

 GRASS COMPRESSED ERDAS8

 GRASS ERDAS16

Example:

Save DEM gisdata\cell\Elevation GRASS

Save DEM grids\Elevation.tif GeoTiff

Closing Views

Close All

Close <Viewname>

Example:

Close DEM

Managing Raster View Display

Minimize All

Minimize <viewname>

Minimize Initial State

Minimize Static

Minimize

Tile

Scenario Dimensions

Model Dimensions: #NumRows, #NumCols

Model Dimensions: <ViewName>

Example:

Model dimensions: MgmtUnit

Change Working Directory

cwd <directory> (or cd <directory>)

– Change current working directory

– Will create directory if not present

Example:

cwd ..\oOutput\baseCase

Creating Folders

mkdir <directory>

– create directory if not present

Example:

mkdir grids

Script Commands to Load and

Run Models and Set Parameters

Loading a model Example: FireModelTopDown.sel

Running a simulation SimStart 100

Changing global variable MeanFireSize = 150

parameter values

Note: use script variables to change the names of input tables

➢ See User Documentation Part 3 section 2 for more syntax details

Loading a Dynamic Model

<ModelName.sel>

➢if a model configuration file was previously
loaded, it will be cleared (this is sometimes done
when a script loads and runs a sequence of
models)

Example:

 STSM.sel

Command Ordering

– BEFORE loading a model config (.sel) file:

• Load rasters (initial conditions)

• Set up input files (files to load by the .sel file)

– AFTER loading a model config (.sel) file:

• Change parameter settings from defaults in .sel file

• Change to output directory

• Run simulation

Simulation Control

SimStart #RunLength

SimStart #RunLength #Runs

SimStart #RunLength #Runs Priority

➢ A model should be loaded first

Example:

SimStart 1000 // run once for 1000 time steps

SimStart 100 10 Low Priority

Setting Parameters

<variable> = Expression

Variable must exist in loaded state space

This will change the default value set when the variable

was created (in a .sel file)

➢Change parameters after loading a model but before running it

(i.e. between loading a .sel file and a SimStart command)

Example:

FireRotation = 100

Expressions

Expr = #Value

Expr = Expr + Expr

Expr = Expr - Expr

Expr = Expr * Expr

Expr = Expr / Expr

Expr = Expr ^ Expr

Expr = Expr % Expr

Expr = (Expr)

➢ use parentheses to be explicit and clear

Script Variables
what they are

Script variables are “placeholder” variables that:

• Can be assigned text or numeric values (no typing)

• When used, they are replaced by their values as if the value

was written

➢ If used where a number is expected the value will be treated like a

number

➢ If used where text is expected the value will be treated like text

Script variables provide a general and powerful tool to

manage scenarios

➢ For example, a script variable an be used to set a parameter

value as well as form part of the output folder name

Script Variables
defining

Script variables are enclosed in dollar signs, and created

when first assigned (can be modified after)

$VarName$ = “value”

$VarName$ = value

$VarName$ = #globalVar#

$VarName$ = <script var expression>

Examples:

$threshold$ = 10

$outputDir$ = “..\outputs”

Script Variables
usage

Put anywhere in an expression except in quoted text

When the script command is executed, the script variable

will be replaced by its value

Examples:

cwd $outputDir$\v1

param1 = $threshold$ + 10

Script Variables
applications

(a) To manage directories

Example:
scn = BaseCase

$gisData$ = ..\..\gisData\grids

$outputDir$ = ..\..\oOutput\scn

initialAge = $gisData$\age_prj.tif

…

cwd $outputDir$

Script Variables
applications

(b) To redirect model input (virtual copy)

Example:
$HarvestFile$ = HarvestTarget7.txt

MyModel.sel

- assuming MyModel.sel uses $HarvestFile$ to load an
input file (covered in Module 5)

Script Control Commands

Condition (if) commands Example: if (MeanFireSize> 0) …

Iteration while (n > 0) …

➢ See User Documentation Part 3 section 2 for more syntax details

Conditions

if (condition)

 … (any commands)

end

Example:

 if (Timestep EQ 100)

 disturbanceRotation = 100

 end

Can also include an “ELSE” section

Iteration

while(condition)

 … (any commands)

end

Example:

while(difference > 0.1)

 …. // change parameters

 SimStart 100 // run simulation

end

Iteration
over integer sequences

for (var = #StartNumber : #EndNumber)

 … (any commands)

end

Default increment is 1

Must be run using a script variable

Example:

 for(x = 1:5)

 param1 = x

 …

 end

Iteration
with larger step increments

for(var = #Number : #Number, #Step)

 … (any commands)

end

Example:

 for(x = 0: 100,10) // use increments if 10 from 0 to 100

Iteration
over file names

for(var = “filenameExpr”)

 … (any commands)

end

Example:
 for(x = \outputRasters\ageClass*)

 ac = \outputRasters\ageClassx

 …

➢ The asterisk (“wildcard”) represents the portion of a filename to
match (there must be at least one wildcard

➢ If there is a single wildcard ‘*’: x will sequentially take on labels
that match just the wildcard

➢ If there are multiple wildcards: x will sequentially take on entire
file names that match

Advanced and Miscellaneous

Commands

Sub-scenario scripts Example: loadBaseLayers.scn

Scheduling commands schedule($reportTime$) …

System commands system “copy a.txt aBak.txt

➢ See User Documentation Part 3 section 2 for more syntax details

Sub-scenario scripts

Scenario: <subScenario.scn>

➢ loads a sub-scenario script as if it was written in the

calling script

• Note 1: cannot use script variables for sub-scenario name (but

can use “if” statements to load different sub-scenarios)

• Note 2: path is relative to the directory of main scenario

Examples:
Scenario: loadBaseLayers.scn

Scenario: defaultParameters.scn

Scheduling Commands

schedule(timestep)

 … (any commands)

end

Useful to schedule changes in inputs or outputs at certain time
points

Example:

 schedule(10)

 x = #year#

 waterLevel = grids\waterLevelx.tif

 end

System Commands

system "command“

 - mostly used to delete, copy and rename files

 - should be avoided if possible (use script variables

to change names of input files rather than copying)

Example:

system "copy AAC1.txt AAC.txt"

Directories
how to know how files relate

– Starting directory for processing a scenario:

• Directory of the scenario file

– Ending directory after scenario processed

• Current working directory

– Directory for files loaded in .sel file:

• Relative to the directory of the .sel file

– Directory of output during a simulation:

• Current working directory

Hands-on
automating simulation

Start the LSEditor and open Scenarios\FireTopDown.scn

• The commands are:

a) Load the spatial inputs (studyArea.tif and initialTSF1.tif) – these are 500 row x 500 col grids

with a resolution of 1 ha.

b) Set the model dimensions using the StudyArea layer

c) Load the model configuration FireModelTopDown.sel file

d) Minimize some layers and tile views

• Add the following command at the end:

 SimStart 2000

➢ Note: the last line of .scn files must be blank (check if there are errors)

In SELES, re-open the FireTopDown.scn scenario script, and the simulation should

start automatically.

Hands-on
changing parameters in a scenario script

In the LSEditor modify FireTopDown.scn
• Add the following commands after loading the .sel file and before the SimStart

command (i.e. after the global variables are created but before running):

 MeanFiresPerYear = 10

 MeanFireSize = 100

➢ This has the same fire cycle as the default mean of 1 fire/year and mean fire size of 1000 ha

In SELES, re-open the FireTopDown.scn scenario script, and the simulation should

start automatically with the revised parameters.

Hands-on
adapt the model to the case study

In the LSEditor modify FireTopDown.scn (make a copy)

• Change the input layers to use the ones from the case study (which should be in

a sibling folder in the main models folder):

 StudyArea = ..\..\CaseStudy\gisData\grids\studyArea.tif

 initialTimeSinceFire = ..\..\CaseStudy\gisData\grids\zero.tif

➢ “..\..” goes up two levels from the Scenarios folder to the CaseStudy folder,

➢ “CaseStudy\gisData\grids” is the path from the models folder to the case study grids

➢ The case study has a studyArea.tif GeoTiff file, and the zero.tif GeoTiff can be used for the

initial time since fire (all 0’s)

Note: loading inputs can be made more elegant and robust by using script

variables (e.g. by creating a $gisData$ script variable to store the common path)

In SELES, re-open the FireTopDown.scn scenario script, and the simulation should

start automatically using the inputs from the case study. Note that it takes a bit for

sufficient aging to be able to see fires.

Hands-on
adapt the model to the case study (input compatibility)

In the LSEditor modify FireTopDown.scn
• Change the initialTimeSinceFire input layer to use the age layer :

 initialTimeSinceFire = ..\..\CaseStudy\gisData\grids\age_prj.tif

In SELES, re-open the FireTopDown.scn
scenario script, and SELES issues a warning:

➢ The age_prj.tif raster has a range from

-1 to 431 but the TimeSinceFire model layer is set to have a range from 0 to 200

This can be addressed in a three ways:

a) Ignore it (not recommended): Pressing OK allows the model to run (but the problem persists)

b) Load a different input (e.g. create and load a new layer that is limited to the range 0 to 200

(Exercise: apply this solution using the tools from this module)

c) Revise the model to be more general to better support adaptability (a topic for Module 5)

Notes on Adaptability

• Models can and should be designed to be adaptable

➢ However, not all potential pitfalls may be foreseen (so use

caution when adapting models to new study area)

➢ The issue on the preceding hands-on was designed to be trivial

for illustration, but some pitfalls may be very subtle

• To support adaptability, models should be well

documented, in particular regarding the required inputs

➢ The art of modelling in SELES will be a topic of subsequent

module

	Slide 1: Module 4 SELES – Driving Models Scenario Scripts
	Slide 2: Module 4 Objectives
	Slide 3: Running Existing Models overview
	Slide 4: Running Existing Models basic steps
	Slide 5: SELES Scenario Structure
	Slide 6: Running Existing Models manual simulation control
	Slide 7: Running Existing Models manual simulation control
	Slide 8: Hands-on loading a simple fire model
	Slide 9: Hands-on running a simple fire model
	Slide 10: Hands-on description of the “simple top-down fire model”
	Slide 11: Hands-on modifying parameters
	Slide 12: Running Existing Models understanding models
	Slide 13: Scenario Scripting Language (.scn files)
	Slide 14: SELES Scenario Structure
	Slide 15: Typical Script Structure
	Slide 16: SELES Scripting Language basics
	Slide 17: Scenario Scripts general
	Slide 18: Comments
	Slide 19: Raster Layers
	Slide 20: Basic Script Commands
	Slide 21: Loading Rasters
	Slide 22: Loading Real-value Rasters as Fixed Precision Integer Rasters
	Slide 23: Saving Rasters
	Slide 24: Closing Views
	Slide 25: Managing Raster View Display
	Slide 26: Scenario Dimensions
	Slide 27: Change Working Directory
	Slide 28: Creating Folders
	Slide 29: Script Commands to Load and Run Models and Set Parameters
	Slide 30: Loading a Dynamic Model
	Slide 31: Command Ordering
	Slide 32: Simulation Control
	Slide 33: Setting Parameters
	Slide 34: Expressions
	Slide 35: Script Variables what they are
	Slide 36: Script Variables defining
	Slide 37: Script Variables usage
	Slide 38: Script Variables applications
	Slide 39: Script Variables applications
	Slide 40: Script Control Commands
	Slide 41: Conditions
	Slide 42: Iteration
	Slide 43: Iteration over integer sequences
	Slide 44: Iteration with larger step increments
	Slide 45: Iteration over file names
	Slide 46: Advanced and Miscellaneous Commands
	Slide 47: Sub-scenario scripts
	Slide 48: Scheduling Commands
	Slide 49: System Commands
	Slide 50: Directories how to know how files relate
	Slide 51: Hands-on automating simulation
	Slide 52: Hands-on changing parameters in a scenario script
	Slide 53: Hands-on adapt the model to the case study
	Slide 54: Hands-on adapt the model to the case study (input compatibility)
	Slide 55: Notes on Adaptability

